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Abstract. A scalar-relativistic Hamiltonian, which contains all relativistic corrections up to second order
in the fine structure constant, is derived with coordinate representation of the first order Douglas Kroll
transformation. In addition to the correction of second order in the fine structure constant, this Hamiltonian
contains the exact relativistic kinetic energy as well as the exact relativistic potential correction up to terms
linear in the external potential. Based on this Hamiltonian, we develop a scalar-relativistic extension of
the Spline Augmented Plane-Wave method, and show that the matrix elements with the new operator can
be evaluated elegantly when using an alternative basis of Spline functions. As a first test we investigate
solid silver and gold. By comparing the energies of the core states with the solutions of the radial Dirac
equation we find that the stabilization of the s levels are slightly overestimated. Even smaller deviations
from the Dirac energies are found for higher angular momentum. By comparing the valence band structure
with the results for other scalar-relativistic operators, which can be used in a variational context, we find
the new operator superior in all aspects: s-type bands are reproduced quite well, and again bands which
are dominated by higher angular momenta behave even better. On the contrary, the results obtained with
simpler scalar-relativistic Hamiltonians are unsatisfactory.

PACS. 71.15.Rf Relativistic effects – 71.15.Ap Plane-wave methods (including augmented plane-wave
method)

1 Introduction
The relativistic dynamic of an electron under the in-
fluence of an external potential is from first principles
described by the Dirac equation for a four component
spinor. In crystals early attempts to solve Diracs equa-
tion are due to Loucks [1] and Hofmann and Bross
[2]. The first self consistent solution was obtained by
Christensen and Seraphin [3] with the aid of Slaters
augmented plane-wave (APW) method [4]. The work
of Christensen and Seraphin was continued later in
the framework of the linearized augmented plane-wave
(LAPW) scheme by MacDonald et al. [5] as well as
by Schiekel [6] with the modified augmented plane-wave
(MAPW) method. Both latter methods use linear vari-
ational techniques. In the meantime, relativistic band
structure schemes have been implemented on the ba-
sis of various linear and non-linear techniques (see e.g.
Refs. [7,8]). It may be generally verified, that any nu-
merical treatment of the crystal Dirac equation requires
complex arithmetic, even though the crystal has a center
of inversion. For this reason the numerical effort for a rel-
ativistic band calculation is enlarged by a factor 83 with
respect to a non relativistic one, in case when all eigen-
solutions are needed. This enormous increase of compu-
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tation time is in contradiction to the fact that in solids
the positron part of the single-particle spectrum is not
relevant, e.g. within a self-consistent calculation. The re-
duction of the four component Dirac problem to a two
component theory by eliminating the positron degrees of
freedom will reduce the numerical work already by a fac-
tor of 8. By further approximations two additional factors
of 8 become available: The first one by neglecting the spin
degrees of freedom, which is called scalar-relativistic ap-
proximation. The second one by reduction to real arith-
metic in the case of a center of inversion. The standard
technique to accomplish the first reduction is the series
of Foldy Wouthuysen (FW) transformations [9] yielding
an expansion of the Dirac Hamiltonian into powers of the
fine-structure constant γ. Including terms up to second
order this operator reads in absence of a magnetic field

HFW =
→
p

2

−
γ2

4

→
p

4

+V (
→
r ) +

γ2

8
(∆V (

→
r )) (1)

+
γ2

4

!

σ ·
[
grad(V )×

→
p
]
.

(We use Rydberg atomic units, i.e. m0 = 1/2, ~ = 1,
e2 = 2, and c = 2/γ = 2 · 137.035968. Length and ener-
gies are given in Bohr radii and in Rydberg, respectively.)
In (1) the first two terms describe the kinetic energy in-
cluding the mass velocity term, the second and the third
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term give potential energy including the Darwin term [10],
while the last term describes the spin-orbit interaction.
Equation (1) is generally accepted since it obeys a struc-
ture that is quite close to the Pauli equation. Addition-
ally, the corrections to the Schrödinger equation included
in (1) lead to the correct energy shift when first order
perturbation theory is applied [11,12]. The energy shifts
become wrong, however, in second and higher orders of γ.
Also the standard interpretation of the terms in (1) leads
to conceptual inconsistencies [13]. Moreover, the analytic
behavior of HFW prohibits its use within an all-electron
variational framework for the following reasons: First of
all, the mass velocity correction −γ2/4p4 to the kinetic
energy in (1) is not bounded from below. Consequently,
the kinetic energy in (1) becomes negative for p > 2γ−1.
Therefore, when increasing the freedom of an arbitrary
Ritz ansatz the eigenvalues always tend towards minus in-
finity. The critical limit p > 2γ−1 seems to be relevant for
core states only, since the kinetic energies of valence elec-
trons are usually less than 4γ−2 by at least three orders of
magnitude. Nevertheless, valence states are effected by the
requirement of mutual orthogonality. Secondly, in pres-
ence of a Coulomb potential, the Darwin correction to the

scalar potential contains contributions ∝ Zδ(
→
r ). This sin-

gularity is much weaker than the one of the mass velocity
term, but for a complete basis-set the spectrum of the
Darwin term is not bounded from below, too. To put it
bluntly, the use of (1) in an all-electron variational frame-
work generates almost random numbers, depending only
on the freedom of the Ritz ansatz used. Despite theses
objections, this operator can successfully be used within
the framework of pseudo-potentials. In this case the afore-
mentioned deficiencies of HFW are veiled since the mo-
mentum of electrons is restricted to small values and the
potential is constructed to be finite at the atomic sites.
More recent pseudo-potential calculations, however, incor-
porate scalar-relativistic effects by the construction of the
pseudo-potential instead, and retain the spin-orbit part
of (1) only [14]. The problem of negative kinetic ener-
gies of (1) was circumvented also in all-electron calcu-
lations by Reinisch and Bross [15,16] who developed a
quasi-relativistic approximation which uses the first order
FW transformation for the valence electrons only while
the core electrons are treated with the Dirac equation.
With this concept, Reinisch and Bross obtained a very
reasonable description of the band structure and of Fermi
surface properties [16], as well as of the Compton pro-
file [15] of gold. However, the ground-state total energy
showed a strong spurious dependence on the position of
the cut between core and valence electrons as well as on
the basis-set. A rigorous application of the FW operator
to all valence electrons lead to a lattice-constant which
was 12.9% too small and to a bulk modulus that was too
large by a factor of 5 (Ref. [16]). Without being based on a
decoupling procedure so-called scalar-relativistic approx-
imations on the radial part of the Dirac equation were
developed independently by Koelling and Harmon [17],
by Gollisch and Fritsche [18], and by Takeda [19]. These
techniques can, however, not be cast into a linear varia-

tional form, since the resulting radial differential equation
is not linear in the energy. Therefore, we will give no fur-
ther discussion of band-schemes based on these techniques
here, but discuss this approximation for core states only.
Additionally, these scalar-relativistic techniques may con-
tain uncontrolled approximations e.g. if the contribution
of the small components to the charge density is neglected
[19]. Returning to the Dirac equation we note that since
the work of Foldy and Wouthuysen mainly two alterna-
tive decoupling procedures were suggested: Within a vari-
ational framework the scheme of Kurşunoǧlu [20] is not
very useful since it involves higher time derivatives than
the first. The corresponding stationary equation becomes
non-liner in the energy. An iterative decoupling procedure
for the Dirac Hamiltonian was proposed by Douglas and
Kroll (DK) in momentum representation and was applied
successfully in a calculation of the fine-structure of Helium
[21]. When compared with the FW transformations, the
DK transformations have two advantages: First of all, the
operators which appear during the transformations can
be used in a variational framework. Secondly, they always
contain the correct relativistic energy momentum relation
after the first step of the transformation, already. The DK
transformations, however, are restricted originally to mo-
mentum representation, while an all-electron band calcu-
lation can be performed sufficiently only in coordinate rep-
resentation. In the meantime the DK transformations was
implemented in quantum chemical calculations of atoms
and small molecules by Hess and coworkers (see e.g.
Refs. [22–26]) together with a basis of Gaussian orbitals.
This basis allows to switch easily from coordinate repre-
sentation to momentum representation. Similar schemes
based on the DK transformation in momentum represen-
tation have also been applied by other authors [27–35].
Motivated by this success of the DK transformation in
momentum representation, we develop a scalar-relativistic
band-structure method based on the first-order DK trans-
formation. In contrast to the above-mentioned schemes,
the DK transformation is carried out in coordinate rep-
resentation. This method is implemented in the frame-
work of the spline augmented plane-wave (SAPW) [36,37]
method and tested in the case of solid silver and gold.
Following this plan, the remainder of the paper is orga-
nized as follows: In Section 2 we transfer the technique of
Douglas and Kroll to coordinate representation and show
how the matrix-elements of the resulting operators can be
evaluated using transformed SAPW basis. The results ob-
tained with this technique are presented and discussed in
Section 3.

2 General theory

2.1 The Douglas-Kroll transformations and the scalar
approximation

The Dirac Hamiltonian for a particle in an external field
caused by an electrostatic potential

H = c
!

α ·
→
p +m0c

2β + V(
→
r ), (2)
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(
!

α, β and V(
→
r ) are the Dirac and potential matrices,

i.e. in standard representation V(
→
r ) = 1 V (

→
r ), and we

temporarily included m0 and c for clarity) is decoupled
by a series of unitary transformations which was origi-
nally proposed by Douglas and Kroll [21] in momentum
representation. Thereby, in contrast to the FW transfor-
mations [9] the odd terms, which mix up the large and
small components, are removed in all orders of the fine-
structure constant γ at each step of a series of unitary
transformations. As a result, the DK transformations give
an expansion of the even operators into powers of the ex-

ternal electrostatic potential V(
→
r ) instead of an expansion

into powers of fine-structure constant γ. In a preliminary
step the kinetic energy and the interaction linear in V are
brought into even form by transforming (2) with the so-
lutions of the free-particle Dirac equation

U0 = N(p)

(
1 +

c(β
!

α )·
→
p

E(p) +m0c2

)
, (3)

where we have introduced the abbreviations

E(p) =
√
m2

0c
4 + c2p2 (4)

N(p) =

√
E(p) +moc2

2E(p)
· (5)

In equations (3-5) and henceforth all functions of the spa-

tial components of the momentum
→
p must be regarded to

be operators, e.g. E(p) =
√
m2

0c
4 − c2∆. After this pre-

liminary transformation the Dirac Hamiltonian becomes

H(1) = U0HU−1
0 = β E(p) + V(1) + R(1), (6)

where V(1) and R(1), respectively, denote the first order
even and odd potential operators and are given by

V(1) = N(p)V(
→
r )N(p)

+N(p)
c
!

α ·
→
p

E(p) +m0c2
V(
→
r )

c
!

α ·
→
p

E(p) +m0c2
N(p) (7)

R(1) = N(p)

(
cβ
!

α ·

[ →
p

E(p) +m0c2
,V(
→
r )

])
N(p).

(8)

By expanding the even operator V(1) into powers of the
fine-structure constant one finds up to order γ2

N(p)VN(p) = V −
γ2

8

(
p2V + Vp2

)
+ . . . (9)

and

N(p)
c
!

α ·
→
p

E(p) +m0c2
V

c
!

α ·
→
p

E(p) +m0c2
N(p) =

γ2

4

(→
p V

→
p +
!

Σ · [(
→
∇V)×

→
p ]
)

+ . . . (10)

(
!

Σ denotes the Dirac spin operator), which both together
again give the well known Darwin and spin-orbit terms.
We conclude that the even operators β E(p) and V(1) in
(6) are correct up to powers of γ2. Therefore, they include
all corrections of the second order FW transformation. As
it can be seen immediately for the kinetic energy β E(p)
and, as it will become clear from the transformations dis-
cussed below for V(1), both terms are correct to all orders
of γ. After this preliminary transformation any nth order
odd operator R(n) is removed by the unitary transforma-
tion

Un = Wn +
(
1 + W2

n

)1/2
= 1 + Wn +

1

2
W2
n + . . . , (11)

with an antihermitian operator Wn. In order remove R(n),
it must fulfill

{Wn, E(p)} = β R(n), (12)

where {., .} denotes the anticommutator. Finally, from
(12) it follows that Wn must be odd and of order Vn, too.
Explicit expressions for W1 in momentum representation
have been given by Douglas and Kroll [21] and were cor-
rected by Jansen and Hess [24]. After each transformation
the Hamiltonian becomes

H(n+1) = UnH(n)U−1
n = H(n)

even+V(n+1)+R(n+1)+. . . (13)

wherein H
(n)
even denotes the even operators of H(n) up to

order Vn. V(n+1) and R(n+1) are of order Vn+1 and the
dots stand for terms of order Vn+2 and higher. They are
not needed explicitly until the (n + 1) st transformation.

Especially, H
(n)
even is not modified under the transformation

with Un. Consequently, the operator H
(n)
even is correct to

order Vn and, hence, each V(j) for j ≤ n is correct in
all orders of the fine-structure constant. From this point

of view H
(1)
even, which we are going to use below, contains

the most dominant terms, i.e. the exact relativistic kinetic
energy given by the Klein Gordon like operator

β E(p) =

(√
m2

0c
4 − c2∆ 0

0 −
√
m2

0c
4 − c2∆

)
(14)

and the first potential contribution V(1) which can be
rewritten to separate the scalar interaction from the spin-
orbit coupling

V(1) = V(1)
s + V

(1)
s−o (15)

whereby

V(1)
s = N(p)V(

→
r )N(p)

+N(p)
c
→
p

E(p) +m0c2
V(
→
r )

c
→
p

E(p) +m0c2
N(p)

(16)

V
(1)
s−o = i

!

Σ ·

[
N(p)

(
c
→
p

E(p) +m0c2
V(
→
r )

)

×

(
c
→
p

E(p) +m0c2

)
N(p)

]
. (17)
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In the present formulation the scalar-relativistic Hamilto-

nian is constructed by adding the kinetic energy to V
(1)
s ,

subtracting the rest energy, and neglecting the small com-
ponents as well as the spin degrees of freedom. Returning
to atomic units we are left with the operator for a scalar
wave-function

Hs =
2

γ2

(√
1− γ2∆ − 1

)
+ V (1)

s (18)

where V
(1)

s is the scalar form of the Dirac operator V
(1)
s

which reads in coordinate representation

V (1)
s =

√√
1− γ2∆+ 1

2
√

1− γ2∆
V (
→
r )

√√
1− γ2∆+ 1

2
√

1− γ2∆

− γ2 1√√
1− γ2∆+ 1− γ2∆

tr(
!

∇ V (
→
r )
!

∇)

×
1√√

1− γ2∆+ 1− γ2∆
. (19)

The Hamiltonian (18) is well suited for the use within
a band calculation: First of all, its spectrum is bounded
from below and the operator can therefore be used within
a variational framework. Secondly, it contains the terms
linear in V to all orders of the fine-structure constant.
Thirdly, like the second order FW transformation, it con-
tains all relativistic corrections to order γ2 which are di-
agonal in spin. For an arbitrary basis, however, it will be
quite cumbersome to calculate matrix elements, since the
square roots containing the Lapacian must be evaluated
by their power-expansion. Alternatively, one may trans-
form the entire basis of a Ritz ansatz to be eigenfunctions
of p2 variationally. While the first technique can hardly
be carried out because spatial derivatives occur in every
order, the second technique requires the calculation of all
eigenvalues and eigenvectors of an additional eigenvalue
problem. Thereby, the computational effort is increased
by a factor of 2, and additional work is to be expected
e.g. for the calculation of the charge density when the
inverse transformation is needed. We avoid the shortcom-
ings of both techniques by the approach described in the
next paragraph.

2.2 Evaluation of matrix-elements

Modern band-structure schemes solve the crystal Schrö-
dinger equation with a linear Ritz ansatz. This technique
generally requires to calculate the matrix-elements of the
Hamiltonian and of the overlap with respect to a certain
set of basis functions. Since the Hamiltonian (18) consists

of products of sophisticated operator functions of
→
p as well

as of
→
r , a natural basis to evaluate matrix-elements does

not exist. Our technique to evaluate matrix-elements with
respect to a basis of localized orbitals consists of a general
procedure which can be used within all linear derivates of
Slaters APW technique and within other linear schemes
using a basis of localized orbitals, and of the application
of this procedure to the SAPW method.

2.2.1 General procedure

Following an idea of Slater [4], APW-like methods di-
vide the crystal into two regions: First of all into non-
overlapping spheres centered at the atomic sites and sec-
ondly into the remaining interstitial region. In the latter,
the wave function can be approximated by a finite su-
perposition of plane-waves which automatically accounts
for Bloch boundary conditions. Within the spheres mod-
ern linear versions of the APW methods, such as MAPW,
LAPW and SAPW, approximate the wave function by a
superposition of radial functions PnL

Ψ
n
→
k

(
→
r ) =

∑
L

N∑
n=1

AnLPnL(
→
r ) (20)

with

PnL(
→
r ) = YL(r̂)i`Pn`(r). (21)

YL(r̂) denotes a spherical harmonic and L = (`,m). In
(20) the coefficients AnL are either variational parameters
– as in MAPW and SAPW – or determined by matching
conditions at the boundary of the spheres – as in LAPW.
Also the choice of the Pn`(r) as well as the range of the
sums vary from scheme to scheme. Moreover, Ritz ansätze
of the form (20) and (21) are also used by other schemes
e.g. linear combination of atomic orbitals [7], linear muffin
tin orbitals [38] or augmented spherical waves [39]. Within
all schemes the matrix elements can be calculated eas-
ily in the interstitial region, e.g. in APW like methods
since plane-waves are pointwhise eigenfunctions of each
component of the momentum operator. For this reason,
the problem of the calculation of the matrix-elements is
an essential one for the localized functions of (20) and
(21) only. Furthermore, we distinguish between operators

which depend on
→
p = −i

→
∇ and operators which depend

on p2 = −∆ only. To evaluate the matrix elements with
the latter, the basis of the {PnL} is replaced by a set of
transformed basis functions {TnL} which are constructed
to be eigenfunctions of the non relativistic kinetic energy
variationally. I.e. they are constructed by solving the gen-
eralized hermitian eigenvalue problem

N∑
n′=1

[
〈PnL|−∆|Pn′L〉−d

2
n′′ 〈PnL|Pn′L〉

]
C

(`)
n′,n′′=0,

(22)

where we used Dirac notation for the matrix elements. The
variational eigenfunctions of the non relativistic kinetic
energy are then given by

Tn′′L(
→
r ) =

N∑
n=1

C
(L)
n,n′′PnL(

→
r ). (23)

Using this new basis set the Ritz ansatz for the wave func-
tions within the spheres (20) is replaced by

Ψ
n
→
k

(
→
r ) =

∑
L

N∑
n=1

ÃnLTnL(
→
r ), (24)
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whereby the expansion coefficients in (24) and (20) are
related via

ÃnL =
N∑

n′=1

C
(`)
n′nAn′L (25)

and a corresponding inverse relation. By construction, this
transformation possesses the following analytic properties.
(i) As solutions of a linear, hermitian eigenvalue problem,
the TnL are mutually orthogonal and span the same func-
tion space as the original orbitals. (ii) Since −∆ is invari-
ant under rotations, the transformation can be carried out

for each L separately and the C
(`)
n′n do not depend on m.

For this reason, the computational effort for the construc-
tion of the TnL can be neglected when compared with the
effort for the entire band calculation. (iii) Since −∆ is a
positive operator the eigenvalues d2

n are greater than zero.
(iv) within the new basis, matrix elements of arbitrary op-
erator functions f of ∆ can be evaluated easily

〈TnL|f(∆)|Tn′L′〉 = f(−d2
n`) δL,L′δn,n′ . (26)

To evaluate finally the matrix elements containing
∇j j = 1, 2, 3 we note that these operators occur only
quadratically in the Hamiltonian (18). The matrix ele-
ments can thus be guaranteed to become hermitian by
acting with the leftmost and rightmost of the ∇j opera-
tors on bra and ket respectively. The final integration can
then be done using the expansion of the TnL into spherical
harmonics (21). Explicit formulas depend on the scheme
used.

2.2.2 Application to the SAPW method

We use the linear Ritz ansatz of the Spline Augmented
Plane-Wave (SAPW) method [36,37] that consists of
plane-waves as well as of localized spline orbitals

〈
→
r |n
→
k 〉SAPW =

∑
j

Aj〈
→
r |
→
q j〉 (27)

+

`≤λ∑
L

N(`)∑
n=1

ALn〈
→
r |B;Ln〉

〈
→
r |
→
q j〉 = ei

→
q j ·
→
r (28)

〈
→
r |B;Ln〉 = YL(r̂) (ir)` Bn`(r). (29)

Herein
→
q j =

→
k +

→
Gj ,

→
Gj is a reciprocal lattice vector, the

A’s denote variational parameters, and the radial func-
tions Bn` are the normalized B-splines defined on a ra-
dial grid of N points in reference [36]. The Bn` are re-
stricted to the non-overlapping atomic spheres centered
at the nuclei and vanish including their first derivatives at
the boundary of the spheres. Therefore, (27) has contin-
uous first derivative everywhere by definition. Thus, the
SAPW method provides a linear discretation of the radial
part of the wave-functions, which can be refined system-
atically by increasing the number of points in the radial

Fig. 1. The radial part of the spline orbitals as defined by
(30) (solid curves) and of the localized spline orbitals (broken
curves), both for N = 9 and ` = 1. For convenience a fac-
tor r` was taken out and the functions were normalized to fit
the scale. The bars on the zero line indicate the points of the
quadratic grid used.

grid to obtain any accuracy wanted. For this reason, the
SAPW scheme was shown to be well suited to deal with
a potential of general shape as well as for the calcula-
tion of response functions. For details we refer to refer-
ences [36,37,40]. Since the plane-waves in (28) are eigen-
functions of the momentum operator the matrix-elements

〈
→
q j |Hs|

→
q n〉 can be evaluated easily. The matrix elements

with the Spline functions are evaluated with the tech-
nique described above: We construct a new basis of spline
orbitals |T ; sL〉

|T ; sL〉 =

N(`)∑
n=1

C
(`)
n,n′ |B, sL〉 (30)

using the eigenvectors of (22). In addition to the general

properties discussed above, the coefficients C
(`)
n,n′ as well

as the parameters d for fixed N become universal con-
stants when we use the scaling properties of integrals of
B-Splines with the radius of the atomic spheres [37]. They
can be calculated once and for all in advance and define a
new orthonormal basis of spline orbitals. The radial part
of these orbitals is compared with the localized B-splines
of the original ansatz (29) in Figure 1. While the original
functions were always positive and had a restricted sup-
port, the new spline functions are generally extended over
the entire sphere and show an oscillating behavior. The
resulting node structure is responsible for their orthogo-
nality. To evaluate the matrix-elements with Hs, we must
be aware of the fact that the |T ; Ls〉 are not eigenfunctions
of −∆ pointwhise, but that we have

〈T ;L′s′|T ;Ls〉 = δL′,L δs′,s (31)

〈T ;L′s′| −∆|T ;Ls〉 = δL′,L δs′,s d
2
`s. (32)

Hence, the overlap with the plane waves 〈
→
q j |T ;Ls〉 does

not vanish. By straightforward calculation one finds for
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the matrix-elements of the kinetic energy [41]

〈T ;L′s′|
2

γ2

(√
1− γ2∆− 1

)
|T ;Ls〉 =

2

γ2

(√
1 + γ2d2

`s − 1

)
δL′,Lδs′,s (33)

〈
→
q j |

2

γ2

(√
1− γ2∆− 1

)
|T ;Ls〉 =

2

γ2

(√
1 + γ2q2

j − 1
)
〈
→
q j |T ;Ls〉 (34)

and of the potential energy

〈T ;L′, s′|V (1)
s |T ;Ls〉 = 〈T ;L′, s′|V |T ;Ls〉

× g(γd`′,s′) g(γd`,s)

+ γ2〈T ;L′, s′|tr
(→

p V
→
p
)
|T ;Ls〉

× h(γd`′,s′)h(γd`,s) (35)

〈
→
q j |V

(1)
s |T ;Ls〉 = 〈

→
q j |V |T ;Ls〉 g(γqj) g(γd`,s)

+ γ2〈
→
q j |tr

(→
p V

→
p
)
|T ;Ls〉

× h(γqj)h(γd`,s). (36)

Thereby, the correction factors g and h depend only on the
eigenvalues d associated with the orbitals (or on the length
of the propagation vectors of the plane-waves). They are
given by

g(x) =

√√
1+x2+1

2
√

1+x2
(37)

h(x) =
1√

2(
√

1+x2 + 1+x2)
· (38)

The matrix-elements of the overlap and the potential are
calculated with the techniques described previously in ref-

erence [36]. The necessity to calculate
→
p V

→
p explicitly,

with the procedure discussed above, is a new feature of the
DK transformation in coordinate representation. Thereby,
the computational effort for the entire band calculation is
enlarged by roughly 10%. Explicit formulas for the matrix-

elements of the traces of
→
p V

→
p for the SAPW ansatz are

given in the appendix. In contrast to what one would have
expected from (18) and (19) the final form of the matrix-
elements (33-36) turns out to be rather simple when the
transformation (30) is used.

3 Results

Along the lines of the derivation in the previous section,
three scalar-relativistic Hamiltonians can be used in a
variational band calculations. Firstly, all scalar terms of
the first-order DK transformation (DK1) lead to the op-
erator (18). While it is not possible to find valuable ap-
proximations on the kinetic energy by expanding it into

powers of γ, such approximations can indeed be obtained
for the relativistic potential correction. The most simple

of them is just replacing V
(1)
s by the non-relativistic po-

tential V which leads to the Klein-Gordon equation (KG).
Thirdly, a more sophisticated approximation is to be ob-
tained by including the corrections to the potential up to
order γ2. This leads to the KG equation supplemented by
the Darwin term (KGD). While the first method is rigor-
ously justified by the derivation in Section 2 the two latter
approaches are temptingly simple, although the KGD ap-

proach suffers from the singular δ(
→
r ) contributions. Both

require no additional computational effort when compared
with a non-relativistic calculation. To test the usefulness
of these three scalar-relativistic approximations we per-
formed the following band calculations for silver and gold:
First of all, the self-consistent one particle potential was
determined by a non-relativistic (NON) calculation using
the scheme outlined in reference [37]. Thereby, the local
correlation potential of Gunnarsson and Lundqvist [42]
was used. The other calculations were performed with the
three aforementioned scalar-relativistic operators keeping
the potential fixed. In addition we calculated the the rel-
ativistic energy shift in first-order perturbation theory
(PT1), using the FW operator. In all calculations we
used about 60(90) plane-waves according to the condition
q2
j ≤ [2π

a
]2 · 15.0(19.1) and 129(65) s-, 65(33) p-, 33(33)

d-, 17(0) f -spline function defined on a Moruzzi-type grid
[43] for gold(silver). In addition we compare the results for
the core states obtained with the approximate Hamiltoni-
ans with their counterparts calculated by means of the
scalar-relativistic radial differential equations (SRRDE)
by Koelling and Harmon [17]

g′` = 2m0c

(
1−

V −E

2m0c2

)
φ` (39)

φ′` = −
2

r
φ` +

 `(`+ 1)

2m0cr2
(

1− V−E
2m0c2

) +
1

c
(V −E)

 g`.
Here g` and φ` denote the radial parts of the small and
the large components of the Dirac equation, respectively.
Similar expressions have been derived by other authors
[18,19]. These SRRDE can be shown [17–19] to reproduce
the exact energies and wave-functions of the Dirac equa-
tion for s-states while they are an approximation for states
with ` > 0. Since equations (39) are apparently non-linear
with respect to the energy E, no (energy-independent)
Hamiltonian belongs to them, and, therefore, they may
not be used in a fully-linear variational band-calculation.
However we like to mention, that they are widely used
within linearized, energy-window (see e.g. [38]) schemes,
which we do not address here.

3.1 Core states

The most crucial hurdle in any approximation on the rela-
tivistic eigensolutions is the description of the core states
since they influence all higher levels by the requirement
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Table 1. Energy levels of the core states for silver for the different Hamiltonians. We compare the exact relativistic energies
obtained by solving the radial Dirac equation with the corresponding non-relativistic energies and with results calculated
with the SAPW method using the Klein-Gordon (KG), the Klein-Gordon plus Darwin (KGD), the first-order Douglas-Kroll
(DK1) Hamiltonian, and first-order perturbation theory (PT1). The last column displays the energies obtained by solving the
scalar-relativistic radial differential equations (SRRDE).

operator exact non KG KGD DK1 PT1 SRRDE

method integration SAPW SAPW SAPW SAPW integration

1s 1
2

−1865.07 −1798.14 −2096.87 −2093.76 −1889.62 −1866.54 −1865.07

2s 1
2

−273.932 −257.203 −298.883 −298.676 −276.433 −273.465 −273.932

2p −246.554 −239.306 −246.125 −247.049 −246.392 −246.893 −246.222

3s 1
2 −48.4135 −44.8329 −53.0979 −53.0633 −48.8802 −48.2884 −48.2169

3p −39.2851 −37.6101 −39.2080 −39.3741 −39.2568 −39.3239 −39.2477

3d −24.6038 −24.2122 −24.5934 −24.6824 −24.6061 −24.6757 −24.6055

4s 1
2 −4.6217 −3.9119 −5.5329 −5.5250 −4.7131 −4.5911 −4.6217

4p −1.9334 −1.6289 −1.9156 −1.9478 −1.9164 −1.9320 −1.9327

Table 2. Energies of the core states of gold for the different Hamiltonians. The SAPW value of the 4f-orbital was corrected
empirically by subtracting 0.0483 Ryd. The notations are explained in Table 1.

operator exact non KG KGD DK1 PT1 SRRDE

method integration SAPW SAPW SAPW SAPW integration

1s 1
2 −5980.65 −5363.97 −9098.46 −8848.64 −6265.74 −5908.23 −5980.65

2s 1
2 −1062.70 −892.705 −1463.00 −1429.40 −1095.88 −1034.43 −1062.70

2p −931.775 −858.378 −922.661 −928.515 −926.628 −924.362 −922.240

3s 1
2 −250.571 −206.550 −338.173 −331.010 −257.920 −243.232 −250.571

3p −211.639 −190.317 −209.683 −211.024 −210.584 −209.459 −209.533

3d −165.626 −159.921 −165.414 −166.191 −165.556 −165.985 −165.532

4s 1
2 −52.6246 −41.0061 −75.1885 −73.3356 −54.5004 −50.5430 −52.6246

4p −39.5495 −34.0064 −39.0623 −39.3893 −39.2818 −38.9083 −39.0226

4d −22.6191 −21.1094 −22.5707 −22.7359 −22.6014 −22.6633 −22.5972

5s 1
2 −5.4179 −3.0507 −10.1921 −9.7896 −5.8031 −4.9419 −5.4179

4f −4.1568 −3.8228 −4.1429 −4.2126 −4.1553 −4.2024 −4.1549

of orthogonality. To set up benchmarks for the energies of
the core levels we solved the radial Dirac equation for the
core states for the spherically symmetric part of the one
particle potential. To compare these energies with the re-
sults of a scalar-relativistic calculation it is necessary use
the mean energy of Dirac states defined as the weighted
average

En,` =
` En`,`− 1

2
+ (`+ 1) En`,`+ 1

2

2`+ 1
. (40)

A similar integration procedure was used in case of SR-
RDE. The core levels with the SAPW method were ob-
tained by setting the number of plane-waves in the ansatz
(27) equal to zero and excluding the non-spherical parts of
the one particle potential. Therefore, by construction, the
value of these radial function is zero outside the atomic
spheres. This is well justified for the core levels in silver
as well as for the s, p, and d-states in gold. The 4f -levels

of gold, however, are significantly different from zero also
in the interstitial region. The difference in energy between
the exact solution of the radial Schrödinger equation and
the solution confined to the atomic spheres turned out to
be 0.0483 Ryd. In order to compare the values from the
SAPW calculations with the solution of the radial Dirac
equation, we subtracted this value in advance, thereby as-
suming that it is independent from the Hamiltonian used.
The results for the core levels in silver and gold are shown
in Tables 1 and 2, respectively. Table 1 shows that in the
case of silver the best scalar-relativistic technique is DK1.
Except for the 1s-state the difference to the correspond-
ing eigenvalues of the Dirac equation are far less than 1%.
Oppositely, the KG approach generally overestimates the
relativistic corrections and consequently underestimates
the energies of the low core states by about 10%. At first
sight it seems quite surprising, that the latter cannot sig-
nificantly be improved by including the Darwin term. A

more detailed analysis [41] shows that, because of the δ(
→
r )
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contributions, the KGD eigenvalues do not converge with
increasing number of basis functions. The basis-set used
here was chosen to give a balance between a good de-
scription of the localization 1s-state and the overshooting

tendency of the δ(
→
r ) contributions. Finally, the results ob-

tained with PT1 are quite good: For p- and d-states they
turns out to be almost as good as the DK results, while
PT1 gives even better energies for the s-states. Finally, the
energies obtained with the SRRDE are, as it is expected,
exact for all s-states while the underestimate the rela-
tivistic effects for p-states slightly more than DK1. The
3d-state is described very reasonably by SRRDE. There
is, however, no substantial difference between the exact
result, DK1, and SRRDE for this state. These results are
not very surprising since relativistic corrections are small
in silver. Therefore, the quality of the PT1 results reveals
the fact that the energy-shifts are given by expectation
values of the FW operator which are proportional to γ2.
When compared with this, any variational treatment is
handicapped by the fact that the states are modified, too.
Thereby, higher orders of γ are included implicitly, which
are no longer described correctly by HFW or the Darwin
term. This is illustrated by the fact, that a variational
treatment of the FW operator does not even lead to a
ground state. While silver is an example for a material
with rather weak relativistic effects gold provides a se-
vere test for any relativistic calculation. In Table 2 we
observe that, apart from s-states which are exact within
SRRDE, again DK1 gives the best scalar-relativistic re-
sults. In contrast to silver the DK1 results are now closer
to the exact values for most of the levels than the estimates
of PT1. Moreover one discovers the following trend: While
DK1 generally overestimates the relativistic energy shifts
for s-states slightly, it underestimates p, d, and f -states
shifts, whereby the error becomes smaller with increasing
angular momentum. Interestingly, this trend is not found
in the results obtained by PT1 which overestimates the
energy-shifts for higher p, d, and f -states systematically.
This demonstrates, that the DK1 Hamiltonian contains
corrections beyond the order of γ2, too, which become
important in the case of gold but could be neglected in
the case of silver. When compared with SRRDE, the en-
ergies obtained within DK1 are superior for all p- d- and
f -states, while, oppositely, SRRDE is exact for s-states
by construction. Remarkably, SRRDE leads to an energy
for the 2p-state, which is even worse than its counterpart
obtained with first-order perturbation theory. In contrast
to silver we find now that neither the KG nor the KGD
approach give an at least sufficient description of the deep
core levels. For the 1 s -state in gold the relativistic energy-
shift is overestimated by almost an order of magnitude
with the KG operator. For the higher p, d, and f -levels
KGD leads to eigenvalues which are roughly as good as
PT1, but which are obtained with a variational procedure.
However, s-states are still described very poor. These fail-
ures of the KG and KGD Hamiltonians arise from the fact
that only s-states have non-vanishing value at the atomic
sites. They are, therefore, to a large extent influenced by
the relativistic correction of the potential. Neglecting it

Table 3. Valence band energies of silver. The notations are
explained in Table 1.

non DK1 KGD KG

Γ1 1.7605 1.6908 1.6267 1.6260

Γ25′ 1.9078 1.8657 1.8590 1.8668

Γ12 1.9793 1.9329 1.9256 1.9342

L1 1.8088 1.7671 1.7502 1.7553

L3 1.9067 1.8650 1.8583 1.8667

L3 2.0342 1.9847 1.9769 1.9860

L1 2.2641 2.2311 2.2292 2.2320

L2′ 2.5687 2.4702 2.3909 2.3936

Table 4. Valence band energies of gold. The notations are
explained in Table 1.

non DK1 KGD KG

Γ1 2.3558 2.0956 1.7718 1.7376

Γ25′ 2.5139 2.3734 2.3613 2.3762

Γ12 2.6214 2.4629 2.4494 2.4660

L1 2.3806 2.2324 2.0706 2.0458

L3 2.5120 2.3732 2.3612 2.3760

L3 2.7055 2.5334 2.5188 2.5367

L1 2.8961 2.7725 2.5718 2.5583

L2′ 3.3065 2.9286 2.7706 2.8015

by using the KG Hamiltonian underestimates the ener-
gies drastically. Moreover, by comparing KGD and DK1
we learn that the Darwin term can hardly describe this

phenomenon while V
(1)
s works quite well. Nevertheless, to

describe the s-states with the same accuracy as the p-, d-,
and f -states higher orders of DK transformations seem to
be necessary. This is, however, a demanding task and can
only be the subject to further work.

3.2 Valence bands

To judge the quality of the energies of the valence bands
obtained within the several scalar-relativistic approxima-
tions, we first compare the absolute values of the band
energies at Γ and L in Tables 3 and 4 for silver and gold,
respectively.

In case of silver we find that s-type bands (Γ1 and
L2′) are stabilized with respect to the other bands. This
effect is larger in case of the KGD and KG than in the
DK1 calculation. As we have learned from the analysis of
the core levels in the last paragraph, the s-stabilization is
overestimated in the KG and KGD calculations. Thereby,
the differences between the exact energies and the KG,
KGD, or DK1 estimates decrease by at least one order of
magnitude when going from one shell to the next. Extrap-
olating this result to the valence bands we conclude that
the KG and KGD values for s-type states have errors as
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Fig. 2. Valence band structure of silver with the DK1 operator (solid lines), the KGD operator (dotted lines), and non-relativistic
(broken lines) with respect to the Fermi energy.

large as 0.1 Ryd. This is almost the order of the energy
shift. In contrast, the DK1 results for s-type states are ac-
curate within about some 0.01 Ryd. The situation looks
much better in case of the d -type bands: Since already the
energies of the 3d-states of silver were reproduced within
0.003 Ryd for the DK1 calculation the error in the d-
type bands should be in the order of some 0.1 mRyd and
thus has the same magnitude as the intrinsic error. In
case of gold the relativistic energy-shifts of the valence
bands are larger by roughly one order of magnitude. Again
the d-type bands are described more precisely than the s-
bands: By extrapolating the errors of the core states we
find errors for the s- and d-type bands of about 0.1 Ryd
and about 0.04 Ryd, respectively. The KG and KGD ap-
proaches overestimate the relativistic stabilization of the
s-type states by about 0.3 Ryd and 0.6 Ryd, respectively,
for gold and are now larger than the relativistic energy
shifts themselves. We conclude that, for heavy elements,
a reasonable description of the relativistic valence band
structure by a scalar-relativistic operator can be obtained
only with the DK1 Hamiltonian. On the contrary, KG and
KGD overestimate the stabilization of the s-bands dras-

tically. Only for intermediate elements, such as silver, the
simple KG and KGD approaches work satisfactorily.

To support this conclusion Figures 2 and 3 show the
band structure of silver and gold, respectively, but – in
contrast to the discussion above – with respect to the
Fermi level. Since the Fermi level in the noble metals
lies between the d- and s-bands, it reacts sensitively on
the stabilization effects discussed above. For this reason
the Fermi energy EF was lowered by 0.058 Ryd and by
0.424 Ryd in the case of silver and gold, respectively, for
the DK1 calculations when compared with NON. For the
KGD Hamiltonian this effect was even more pronounced.
While silver (see Fig. 2) shows only moderate relativistic
modification of the band energies still some conclusions
can be drawn with respect to the optical properties. The
essential feature of silver is the interband absorption edge
at which stems from transitions near L and X. It is un-
derestimated systematically in a non relativistic calcula-
tion. At X KGD and NON posses almost the same tran-
sition frequency while it is enlarged by almost 10 mRyd
for the DK1 operator. At L the L1 level is shifted above
the Fermi level for the KGD Hamiltonian and intersects
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Fig. 3. Valence band structure of gold with the DK1 operator (solid lines), the KGD operator (dotted lines), and non-relativistic
(broken lines) with respect to the Fermi energy.

for the DK1 Hamiltonian and the probability for transi-
tions vanishes here. However, this should no be taken too
serious, since we compare energy levels obtained with the
same non relativistic potential. As we found during first
self-consistent calculations the L1 level becomes occupied
again in case of DK1. In the conduction bands DK1 pre-
dicts only moderate stabilizations of s-type bands while
for KGD the topology of the conduction bands is modi-
fied along Z. In case of gold (see Fig. 3), the energy shifts
are much larger: The KGD calculation modifies the band
structure completely and introduces a indirect band gap
in the conduction band between about 0.02 and 0.22 Ryd.
Thereby the Fermi level is lowered, such that the d-type
bands e.g. at Γ25′ and Γ12 lie only slightly below EF. The
low Fermi level disguises that Γ1 which we find now at
−0.771 Ryd below EF has much to low energy. These
predictions disagree with even the most elementary ex-
perimental features of gold e.g. with its read color. In
contrast to KGD, DK1 shows, when compared with the
non-relativistic calculation, a stabilization of the s-type
with respect to the d-type bands which does not modify
the metallic character of gold: In the valence bands s-type

states are lowered by about 0.2 Ryd while the energy of
d-type bands is increased by almost 0.5 Ryd. The latter
effect is caused by the difference in the Fermi level. These
results support our statement, that a variational treat-
ment of scalar-relativistic effects in band theory for heavy
elements needs at least the first order Douglas Kroll DK1
operator.

4 Conclusions

The DK1 operator includes the exact kinetic energy as
well as a modified form of the potential correction. Both
terms avoid the singularities of the mass-velocity term and
of the Darwin term. With this step we established a linear
Hamiltonian to be used in any variational framework in
coordinate representation. The scalar relativistic SAPW
scheme provides linear method which includes all rela-
tivistic corrections in order γ2 but also important parts
of higher orders. Therefore, its results for heavy metals
go significantly beyond perturbation theory. A detailed
comparison with experimental data can, however, only be
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performed with self-consistent data which is subject of our
further work.
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Appendix: Matrix-elements of the trace
operators

The matrix-elements of tr(
→
p V

→
p ) can be trivially be

evaluated only in the case when the orbitals in bra and
ket are plane-waves. Then one gets

〈
→
k j |tr(

→
p V

→
p )|
→
km〉 =

→
k j ·

→
km V (

→
Gj −

→
Gm). (A.1)

In the cases with at least one spline orbital we use

〈
→
r |
→
p |T ; sL〉 = ∂r

(
r`Ts`(r)

)
· i`−1→r

o
YL(
→
r

o
)

+ r`−1Ts`(r) · i
`−1r

→
∇YL(

→
r

o
). (A.2)

Since
→
r

o
YL(
→
r

o
) and r

→
∇YL(

→
r

o
) are functions of the unit

vector
→
r
o

only, they can again be expanded into real val-
ued spherical harmonics. By straightforward manipulation
we put (A.2) into the form

〈
→
r |
→
p |T ; sL〉 =

∑
L′

(ir)`
′ →
F s,L′,L(r)YL′(

→
r
o
) (A.3)

whereby

→
F s,L′,L(r) =

1

r`
′

(
∂r
(
r`Ts`(r)

)
·
→
CL′L

+r`−1Ts`(r) ·
→
DL′L

)
(A.4)

with the matrix elements of the unit vector
→
CL′L = i`−`

′−1〈L′|
→
r

o
|L〉 and the unit gradient

→
DL′L = i`−`

′−1〈L′|r
→
∇|L〉. Both of them can be evaluated

easily with Wigner Eckart’s theorem. Furthermore, they
obey the dipole selection rule `′ = ` ± 1. Therefore, the
sum in (A.3) contains only a few terms. Moreover, since
→
DL′L vanishes for ` = 0 and Ts` is a cubic spline,

→
F s,L′,L

is finite at the origin even if `= 0 and `′= 1. Using (A.4)
we find

〈
→
k j |tr(

→
p V

→
p )|T ; sL〉 =

1

Ω

∑
L1,L2,L3

i`1−`2YL2(
→
k

o

j)

×

ro∫
0

j`2(kjr)ZL3(r)
→
k j ·

→
F s,L1,L(r) r`1+1 dr (A.5)

(j` denotes the spherical Bessel function and Ω is the vol-
ume of the unit cell) and

〈T ; s1L1|tr(
→
p V

→
p )|T ; s2L2〉 =

1

Ω

∑
L3,L4,L5

〈L3|L4|L5〉

i(`2−`5)

×

r0∫
0

ZL4(r)
→
F
∗

s1,L1,L3
(r) ·

→
F s2,L2,L5

(r) r`3+`4+1 dr.

(A.6)

Thereby, we made use of the fact that V is diagonal
in coordinate representation and can, within the atomic
spheres, be written as

〈
→
r |V |

→
r
′
〉 = δ(

→
r−

→
r
′
)

1

r

∑
L

YL(
→
r

o
)ZL(r). (A.7)

To do the radial integrations in (A.5) and (A.6) we use the

fact that
→
F s,L′,L is a polynomial spline with continuous

first derivative. The effective charge ZL(r) is represented
by a cubic spline, too. Then, together with the power ex-
pansion of the spherical Bessel functions the integrations
can be carried out analytically. The formulae are lengthy
but quite simple and are omitted here. Finally, we wish
to remark that for every finite shape-approximation on
the effective potential in the atomic spheres in (A.7) all
sums over angular momenta in (A.5) and (A.6) become
restricted to a finite range. This is caused either by the
ansatz together with the dipole selection rule or by the tri-
angle relation for the Gaunt coefficients 〈L1|L3|L2〉 which
vanish unless |`1 − `2| ≤ `3 ≤ `1 + `2.

References

1. T.L. Loucks, Augmented Plane-Wave Method (Benjamin,
New York, 1967).

2. H. Bross, I. Hofmann, Z. Phys. 229, 123 (1969).

3. N.E. Christensen, B.O. Seraphin, Phys. Rev. B 4, 3321
(1971).

4. J.C. Slater, Phys. Rev. 51, 846 (1937).

5. A.H. MacDonald, W.E. Picket, D.D. Koelling, J. Phys. C
13, 2675 (1980).

6. F.B. Schiekel, Thesis, LMU München, Munich. (1984).

7. M. Richter, H. Eschrig, Solid State Commun. 72, 263
(1989).

8. S.C. Lovatt, B.L. Gyorffy, G.Y. Guo, J. Phys.-Cond. Mat-
ter 5, 8005 (1993).

9. L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950).

10. C.G. Darwin, Proc. Roy. Soc. A (London) 118, 634 (1928).

11. W. Barker, F. Glover, Phys. Rev. 99, 317 (1955).

12. B. Thaller, The Dirac Equation (Springer, Berlin, 1992),
p. 188ff.

13. R. Gurtler, D. Hestenes, J. Math. Phys. 16, 573 (1975).
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